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1. Introduction

Systems where an axially moving continuum wraps around rotating pulleys occur in serpentine
belt drives, band saws, data storage tape drives, paper handling machinery, thread and fiber
winders, and so on. In the literature, axially moving continua have been studied extensively,
especially for the belt or band in a single span decoupled from the pulleys. In this case, the belt/
band is modeled as a moving string (without bending stiffness) or a moving beam (with bending
stiffness) subject to specified boundary conditions. These are the simplest models and are the basis
for most axially moving media analysis.
For the axially moving beam model, the span boundary conditions are typically specified as

simply supported or clamped, and the beam is assumed to remain straight in the steady state. In
most practical systems, however, the beam wraps around two fixed pulleys. This induces initial
curvature in the steady state for non-vanishing bending stiffness, and the beam–pulley contact
points are not on the common tangent between the pulleys.
Some research considers the effects of the beam wrapping around the pulleys, which influences

the steady and dynamic motion of the beam [1–9]. Turnbull et al. [9] study the nonlinear contact
effect of belt wrapping and unwrapping during motion by using perturbation methods.
Alternatively, one can consider the beam wrapping on the pulley only in calculating the steady
state around which the linearized beam motion occurs. For the steady-state solution, the span
boundary conditions including the beam wrapping effect are treated in two different ways. The
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) Fixed boundary model; and (b) undetermined boundary model.
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first way (Fig. 1(a)) assumes the beam–pulley contact points are fixed on the common tangent line
between the two pulleys. The steady motion analysis uses simple supports with moments of EI/R

applied at the boundaries, where EI is the beam bending rigidity and R is the bounding pulley
radius. Linear vibration about the steady state can be investigated [4,6–8]. The second boundary
condition treatment (Fig. 1(b)) eliminates the restriction that the contact points lie on the common
tangent. Instead, the contact points are not specified a priori but are calculated (along with the
steady beam deflections and tension distributions) from a steady-state analysis of the beam in the
free spans [2,3,5]. Hwang and Perkins [2,3] study the steady state and free vibration of a single
beam span stretched between one fixed pulley and a spring-loaded pulley. Kong and Parker [5]
consider the steady-state mechanics of a two-span system with two fixed pulleys in which the beam
transverse and longitudinal inertia is incorporated.
Of these two different ways of modeling the beam wrapping around the pulleys, the first one is

much simpler but sacrifices some model fidelity. No quantitative comparison addressing the
impact of these modeling options on the vibration properties has been found in the literature. In
this note, the free vibration differences between these two models dealing with the beam–pulley
wrapping effect are highlighted for a beam span between two fixed pulleys (the usual case in
applications). The results of these two non-trivial steady-state models are compared with the
commonly used model of simple supports with a straight (trivial) steady solution. When the
bending stiffness is small, the natural frequency differences between these different models are
minor, but the differences are pronounced for larger bending stiffness still within the practical
range of industrial systems.
2. Fixed boundary model

Fig. 1(a) shows a single span beam stretched between two fixed pulleys. The span admits the
transverse displacement wðx; tÞ: The beam moves with constant speed c and has fixed span length
L, where the boundary points A and B lie on a line tangent to both pulleys. The span is subject to
constant moments at its ends due to wrapping of the beam around the pulleys [4,6–8]. This gives
the boundary conditions

wð0; tÞ ¼ 0; EIw;xxð0; tÞ ¼ �
EI

R1
; wðL; tÞ ¼ 0; EIw;xxðL; tÞ ¼ �

EI

R2
: (1)
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The nonlinear equation of motion is [10]

mðw;tt � 2cw;xt þ c2w;xxÞ � P0 þ
EA

L

Z L

0

1
2
w2
;x dx

� �
w;x

� �
;x

þ EIw;xxxx ¼ 0; (2)

where m is the beam mass density per unit length, P0 is the initial tension, EA is the longitudinal
stiffness, and EI is the bending stiffness. The integral term in Eq. (2) comes from the quasi-static
stretching assumption that the dynamic tension is a function of time but does not vary along the
beam. This is reasonable for most applications where EA=P0b1 and longitudinal waves
propagate much more rapidly than transverse waves.
From Eq. (2), the steady-state displacement w� is governed by

EIw�
;xxxx � Pw�

;xx ¼ 0; (3)

where P ¼ P0 � mc2 þ ðEA=LÞ
R L

0
1
2
ðw�

;xÞ
2 dx is the tension in the steady state. The boundary

conditions are similar to Eq. (1) except that all w are replaced by w�:
Linearization of the general dynamic equation (2) about the steady-state configuration w�ðxÞ

yields

mw;tt � 2mcw;xt � Pw;xx þ EIw;xxxx � EA

Z L

0

w;xw�
;x dx

� �
w�
;xx ¼ 0; 0oxoL; (4)

where wðx; tÞ now represents the small vibration about w�ðxÞ: The homogeneous boundary
conditions for wðx; tÞ are

wð0; tÞ ¼ 0; w;xxð0; tÞ ¼ 0; wðL; tÞ ¼ 0; w;xxðL; tÞ ¼ 0: (5)

Galerkin discretization of Eqs. (4) and (5) is readily applied to find the natural frequencies and
vibration modes. The chosen basis functions are cnðxÞ ¼ sinðnpx=LÞ; n ¼ 1; 2; 3 . . .
This model includes steady beam deflection w�ðxÞ in the formulation but allows no deviation of

the boundary points caused by beam wrapping. This creates slope discontinuities (or kinks) at A
and B (Fig. 1(a)). A simpler model, which is the one most commonly used, results from ignoring
steady beam deflection with w�ðxÞ ¼ 0 in Eqs. (4) and (5).
3. Undetermined boundary model

Instead of specifying the boundaries for the beam span at the points of common tangency, the
boundaries of the span in the steady state can be determined by the geometric conditions that: (a)
the beam end curvature equals the inverse of the end pulley radius, and (b) the curved beam
contacts and is tangent to the end pulleys. The boundaries are unknown a priori (Fig. 1(b)). This
model eliminates the slope discontinuity at the span boundaries. With this model, the steady-state
governing equations for the moving beam in a free span are [5]

ðP
_

�GV Þ
0
þ EIkk0 ¼ 0; ðP

_

�GV Þk� EIk00 ¼ 0; (6)

where P
_

ðsÞ and V ðsÞ are the beam tension and speed along the beam, G is the constant mass flow
rate, k ¼ dy=ds is the beam curvature, y is the inclination angle measured from the due east
direction, and 0 represents differentiation with respect to the arc coordinate s (Fig. 1(b)). Notice
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beam inertia is included in Eq. (6) in the longitudinal and transverse (centripetal acceleration)
directions. The constitutive law P

_

¼ EAðm0V=G � 1Þ links the field variables P
_

ðsÞ and V ðsÞ; where
m0 is the mass density per unit length in the stress-free state [5,11–13]. The total arclength L

_

is not
known a priori; it is determined from the requirement that the curved beam contacts and is
tangent to both bounding pulleys. This steady system can be mathematically reformulated to a
standard form with two fixed boundaries and numerically exact steady-state solutions are
calculable [5].
Linearized motion about the steady solution w

_ �
ðxÞ for the undetermined boundary model is

governed by

mw;tt � 2mcw;xt � Pw;xx þ EIw;xxx � EA

Z �L

0

w;xw
_ �

;x dx

 !
w
_ �

;xx ¼ 0: (7)

The distinctions between Eqs. (7) and (4) are that: (a) w� is replaced by w
_ �
; which represents the

steady state of the undetermined boundary model, and (b) �L is the straight distance between the
two boundary points in Fig. 1(b), which is longer than L in Fig. 1(a) due to the unwrapping of the
beam on the pulleys. Galerkin discretization with the basis functions cnðxÞ ¼ sinðnpx= �LÞ; n ¼

1; 2; 3 . . . yields the eigensolutions.
In deriving the steady state w�ðxÞ used in Eq. (4), the tension and speed are uniform throughout

the beam. In calculating the steady state in the undetermined boundary model, the tension and
speed vary along the beam [5]. To compare results from Eqs. (4) and (7), the speed c and tension P

at the span midpoint are applied throughout the beam in Eq. (7).
4. Comparison and discussion

The natural frequencies from the above models are compared in this section. The case where no
wrapping is considered (that is, Eqs. (4) and (5) with w�ðxÞ ¼ 0) is referred to as the trivial
equilibrium case. The beam tension and speed are the same in the free vibration analysis for the
three different models, but the steady-state deflections of the free span are different.
The numerical results are presented in dimensionless form. For accurate comparison, the three

models are non-dimensionalized in the same way using

x̂ ¼
x

L
; ŵ ¼

w

L
; t̂ ¼ t

ffiffiffiffiffiffiffiffiffi
P

mL2

r
; �2 ¼

EI

PL2
; v̂ ¼ c

ffiffiffiffi
m

P

r
; g ¼

EA

P
: (8)

Substitution of Eq. (8) into Eq. (4) leads to the dimensionless equation for the fixed boundary
model (after dropping the hat)

wtt þ 2vwxt � ð1� v2Þwxx þ �2wxxxx � g
Z 1

0

w;xw�
;x dx

� �
w�
;xx ¼ 0; 0oxo1: (9)

The dimensionless form of Eq. (7) is similar to Eq. (9) except w�ðxÞ is replaced by w
_ �
ðxÞ and the

limit of integration and right boundary occur at �L=L: The nominal case from which parameter
variations are considered is � ¼ 0:06; v ¼ 0:5; g ¼ 1200; and R=L ¼ 1=p: The two end pulleys are
assumed to have the same radius R for simplicity.
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The steady motions from the three models are shown for varying � in Fig. 2. The curvature
caused by the beam bending around the pulleys increases with bending stiffness. For large
bending stiffness, the differences of these three steady states are apparent. The fixed and
undetermined boundary models have similar peak-to-peak amplitudes, but the undetermined
boundary model has a noticeably longer span length.
Fig. 3 shows the relationship between the natural frequencies and beam bending stiffness. When

the bending stiffness is small, the natural frequencies of the fixed boundary model and those of the
trivial equilibrium model are very close to each other, but both are higher than the corresponding
natural frequencies of the undetermined boundary model. Especially for the third and higher
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Fig. 2. Comparison of steady states for different models; v ¼ 0:5; R=L ¼ 1=p; g ¼ 1200: (a) Undetermined boundary

model; and (b) fixed boundary model. � ¼ 0 corresponds to the trivial equilibrium model.
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Fig. 3. Dimensionless natural frequencies for varying bending stiffness; v ¼ 0:5; R=L ¼ 1=p; g ¼ 1200: (– – –) fixed

boundary model; (—) undetermined boundary model; and (?) trivial equilibrium model.
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natural frequencies, the differences are clearly evident even for very small �: For the undetermined
boundary model, as bending stiffness increases from zero, the fundamental natural frequency
initially decreases in the range 0o�o0:0195; and then increases for bending stiffness larger than
0:0195 (Fig. 3(b)). The second natural frequency behaves similarly. This unusual phenomenon is
because there are three different mechanisms that affect the system: (a) bending stiffness increases
the free span length, which softens the system, (b) bending stiffness increases the curvature, which
stiffens the system, and (c) higher bending stiffness directly increases natural frequencies. The
impact of each effect can be assessed by comparing the three models. All three mechanisms are
active for the undetermined boundary model. Only the last two are effective for the fixed
boundary model. The trivial equilibrium model is affected only by the last mechanism. When
bending stiffness is small, the dominant effect is span lengthening for the undetermined boundary
model. The increased span length mechanism has no effect on the fixed boundary model, so its
natural frequencies are always higher than those of the other two models.
The relationship between the natural frequencies and beam speed is shown in Fig. 4. Natural

frequencies do not decrease monotonically with beam speed for both of the non-trivial steady-
state models. This differs from the trivial equilibrium model where increasing beam speed
monotonically decreases all natural frequencies. Like with bending stiffness, increasing beam
speed changes the steady state (Fig. 5) around which free vibration occurs, introducing curvature
that stiffens the system. The upward natural frequency shift from increased curvature is mitigated
somewhat in the undetermined boundary model because of the increased free span length. Curve
veering is apparent in the eigenvalue loci for the non-trivial steady-state models [14].
Fig. 6 shows the effect of end pulley radius on the natural frequencies. For the trivial

equilibrium model, pulley radius has no influence on the spectrum of the moving beam, as
expected. For the other two models, the natural frequencies decrease as the pulley radius
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increases. This is because the steady-state curvature induced from bending stiffness decreases with
increasing pulley radius.
When R=Lb1 (although physically we have the limitation R=Lo1=2 unless the pulleys are

misaligned), the natural frequencies of the fixed boundary model converge to those of the trivial
equilibrium case, but those of the undetermined boundary model converge to a lower value. To
examine this, note that the deflection and curvature of the beam are small for R=Lb1 or small
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bending stiffness �51: Under either of these conditions, the linearized equations (6) are

ðP
_

�GV Þ
0
¼ 0; ðP

_

�GV Þk� EIk00 ¼ 0: (10)

Integrating each of these gives

P
_

�GV ¼ P
_
���
s¼L

_

=2
� GV j

s¼L
_

=2
¼ P � Gc ¼ T ; Ty� EI y00 ¼ Constant; (11)

where P and c are the beam tension and speed at the midpoint of the free span and k ¼ dy=ds: For
the case of two pulleys having the same radius, the slope y and shearing force EI y00 vanish at the
midpoint, so the second of Eq. (11) gives

EI
d2y
ds2

� Ty ¼ 0 ) yðsÞ ¼ C1e
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
s þ C2e

�
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
s; (12)

where C1 and C2 are constants. Substitution of kð0Þ ¼ y0ð0Þ ¼ �1=R and yðL
_

=2Þ ¼ 0 gives

C1 ¼
ð1=RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=TÞ

p
e�

ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
L
_

=2

e
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
L
_

=2 þ e�
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
L
_

=2
; C2 ¼

ð1=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=TÞ

p
e
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
L
_

=2

e
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
L
_

=2 þ e�
ffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
L
_

=2
: (13)

Belt (and many other) applications usually have EI=TL
_ 2
51; which gives C1 � 0 and C2 �

ð1=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT=EIÞ

p
: In Eq. (12) letting s ¼ 0 gives

yð0Þ �
1

R

ffiffiffiffiffiffi
EI

T

r
(14)

Although the derivation procedure is somewhat different, the result (14) is similar to that derived
by Gerbert [15] except that in Gerbert’s case T represents the tension at the span midpoint. The
difference is because Gerbert neglects beam inertia.
The length of the free span is increased by approximately 2Ryð0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
EI=T

p
; which is the

length difference between these two models as the free span end segments unwrap from the pulleys
beyond the points on the common tangent line (Fig. 1(b)). This increased length, which is
independent of R and L, causes the natural frequencies of the undetermined boundary model to
converge to a lower value than the other two models (Fig. 6).
Notice that the above derivation and the conclusion (14) also apply to the case of small bending

stiffness (�51) with finite end pulley radii because Eq. (10) only requires small deflection and
curvature. For such cases, the free span length is increased by 2

ffiffiffiffiffiffiffiffiffiffiffiffi
EI=T

p
:

5. Summary

For the free vibration of axially moving beams, two different models considering the bending
effect of the beam wrapping around the bounding pulleys are discussed. The commonly used
model having a trivial equilibrium independent of pulley wrapping is also compared.
Bending of the moving beam around the bounding pulleys causes a non-trivial steady motion

about which the system vibrates. This steady curvature tends to increase the beam natural
frequencies. The fixed boundary model (Fig. 1(a)) overestimates the natural frequencies due to the
underestimated span length, especially for large bending stiffness. For the undetermined
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boundary model (Fig. 1(b)), as bending stiffness increases, some natural frequencies initially
decrease when the bending stiffness is small because the dominant effect of bending stiffness
increased free span length in this range.
Unlike the trivial equilibrium model, natural frequencies do not decrease monotonically with

beam axial speed for both of the non-trivial steady-state models because increasing beam speed
increases curvature in the steady state. For the fixed boundary model, increasing beam speed
increases the curvature, which stiffens the system. For the undetermined boundary model in
addition to increasing the curvature, increasing beam speed increases the free span length, which
softens the system.
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